
AD-A272 781 c•
Broad Agency Announcement Number 91-18

0

A Practical Software Engineering

Curriculum: A Pilot Study

Accesion For -
NTIS CRA&I 0

DTIC TAB
Unannounced 0

Justification

By A mun P. G upta ,"::'; (:F -U - i•;.v , po2sLtoT I.:

Availability Codes Weibin Zhu
Avail andJor

Dist Special

W-t Kimberly R. Brown

Calvin Ezell

Division of Computer and Applied Sciences xC

Georgia Southwestern College I C
Americus, Georgia 31709-4693 V

Phone: (912) 928-1393

Email: gupta@gswaixn3.gsw.peachnet.edu

93-27749

7j-J- 1&62

00 0 0 0 0

I

A Practical Software Engineering I
Curriculum: A Pilot Study

0

ABSTRACT

This project identifies a problem in Software Engineering instruction and proposes

so approaches to overcome iL It is advocated that a software engineer must have at least

one formal course in Software Engineering. Further, a course containing merely the con-

cepts is not sufficient; additional course(s) complementng the formal course are required.

A streamlined sequence of courses was developed that would help achieve the goals of

Software Engineering. This report presents the course sequence and the observations for

the project It is hoped that other institutions can benefit from this study.
0

I. INTRODUCTION

The software crisis is very real and has been very well documented. Many books

and articles related to Software Engineering (e.g., [Boe83], [Boo87a], [Fai85]) report that

software costs have surpassed hardware costs and are steadily increasing. Though signifi-

cant contributions have resulted from research in this field, their impact has not yet been
0

fully achieved. Some of this can be atributed to the Software Engineing education at

small institutions and, to some extent, at large institutions as well. Of the 1011 US insti-

tutes and colleges offering the Computer Science curriculum (as listed in [CBB91] and by

electronic mail and USENET survey), 523 offer only the Bachelors as the highest degree

in Computer Science. Unfortunately, as listed in [CBB911, of the 523 institutions, only

187 have formal course(s) in Software Engineering. This indicates that a significant por-

tion of the gradmutes have no formal Software Engineering course/training. It has been

agreed that Software Engineering education is obtained only through *hands-on" experi-

ence, implying that one course is not sufficient for education in Software Engineering;

follow-up courses are required. To this effect some adjustment in teaching Software

II

0 0 0 0 0 0 0 0 0 4l

2

Engineering is proposed. This paper presents the results of the study. This research is tar-

geted at small traing institutions because they constitute the majority of the existing US

institutions offering the Bachelor of Science curriculum in Computer Science. 0

In this paper a streamlined sequence of courses is presented; it is expected to benefit

students desiring to become Software Engieenng professionals. Attempts are also made

to (1) study the feasibility of establishing such a curriculum, (2) identify problems encotm-

tered during the research, and (3) give suggestions to other institutions who wish to estab-

lish a similar curriculum. In Section H the status of Software Engineering instruction at S
Georgia Southwestern College is presented. Section III provides the rationale for this

research. First, the problem is described and then, some approaches to overcome it are

presented. Section IV identifies the sequence of course developed to provide the formal

training and the follow-up courses. Section V gives the experiences during this pilot study

and also some suggestions for other institutions thinking of embarking on such a project.

Finally, Section VI summarizes the experiences and presents conclusions.

11. BACKGROUND

Software development costs have rapicly increased with respect to hardware costs.
O

Software Engineering text books can be easily found which give figures indicating that

software costs have surpassed hardware costs. Thus, it is important that Software

Engineering be an integral part of any Computer Science curriculum. Although significant

contributions have resulted from research in the field of Software Engineering, their poten-

tial impact has not yet been fully realized, it is believed that the major problem lies in

Software Engineering education; students are often taught only the principles of Software
S

Engineering and do not get hands-on training on practicing these principles. What is

required is software engineers who know the principles and also have first hand experience

in how they affect software systems.
S

|S

S SSS•

3

The main objective of this research was to develop a course sequence for teaching I
Software Engineering that provides students with the principles and practices of Software

Engineering. To be called a software engineer one must have at least one formal course in

the discipline. Furthe, a coure containing merely the foundations of Software

Engineering is not sufficieat; courses complementing the basic course are required. To

this effect, a three quarter course sequence for students aspiring to become software engi-

neers is studied. The first course covers the principles of Software Engineering followed

by two courses in which students use these principles. By actually working with the

principles and learning from the results, future software engineers will have a strong foun-

dation. GSW has adopted the Ada programming language for the later two courses since it

provides features well suited for Software Engineering ([SamS6D.

The remainde of this section presvits the status of Software Engineing -inuc-

tion at Georgia Southwestern College (GSW). GSW is a small Liberal Arts College with

an enrollment of slightly over 2500 students (it is a small institution). The Division of

Computer and Applied Sciences was established in 1984 and offers, among others, a

Bachelor of Science degree in Computer Science. In the Fall 1991 Quarter the Division had

over 230 students of which over 40 were pursuing a B.S. in Computer Science.

Currently, there are almost 200 students of which about 25 are enrolled in the B.S. in

Computer Science program.

Computing facilities available to students in the Division are an IBM 9375 mini-

computer running the VM operating system and on the network within the Division. The

Division also has five IBM PS/2 file servers (Intel 80386 and 80486 based) each of which

runs the IBM AIX-I.2/I.0 operating system. Each of these servers is connected to several
Intel80286 and 80386 based microcomputer via an Ethernet network. Within this envi-

ronment students have access to the system resources from any mieocomputer by connect-

ing to any one of the five file servers. The stand-alone microcomnputer based environment

0 0 0t 6 0 0 0 0

4

provides students with capabilites to perform basic takz like printing, xead-ghe pro-

cessing, and word processing whereas the IBM AIX based environment provides them X"

with enhanced capabilities. Recently, a new node was set up to run under the SCO 0

OpenDesktop System Release 3.2 from Santa Cruz Operation, Inc. It also serves as the

host for the Ada compiler from Alsys, Inc. So far this node is used only for the Ada-based

Software Engineering courses. S

Since 1990 the B.S. program in Computer Science has seen significant changes.

Some deficiencies in the curriculum wer identified using [ACM911. Accordingly, a few

new courses were added and some existing courses were modified. A significant change

was the addition of a course in Software Engineering in the Summer Quarter of 1991. This

course was offered for the first time in the Fall Quarter of 1991 and used C or Pascal as the

programming language for small projects. Other courses added included one in Discrete

Structures and two entitled Software Engineering with Ada (I and II).

I!!. RATIONALE 0 0

This section identifies the problem with Software Engineering instruction and pro-

poses possible solutions. Students who lack a formal course in Software Engineering

graduate entrenched with Von-Neumann type rogramming habits and use them in the

work place. These have resulted in the current abundance of ad hoc code, strangling the

industry. Thus, at least one course in Software Engineering is required for every software

engineer. However, current methods often leave graduates wondering how Software

Engineering principles taught in class are usefW in the real world. This leads to the con-

clusion that there should be "something else" which complements the formal Software

Engineering course.

Formal instruction in Software Engineering is generally provided as a high level

course (in the junior or senior year) when many students have completed the requisites 0

• • • •• • •

5 0

necessary for programming and developed programming habits (good or bad) which will I
be hard to change. Most of these habits are then intermixed with those prevalent practices

in the work place leading to chaos and adding to the software criisi. This problem is more

pronounced with those not having formal training in Software Engineering. On the other

hand many software engineers wonder how the Software Engineering principles taught in

class are useful in the real world. They have learned the principles without learning how to

practice them in real life.

The remainder of this section provides solutions to the above problems under the

assumption that Software Engineering will be taught at small institutions. It also supports

as to why Ada is a good choice in the Software Engineering curriculum. It is important to

note that no matter which of these best suits a particular institution, certain key problems

must always be addressed. These areas present themselves in the form of courses in math-

ematics and technical writing. Experience at GSW has shown that many students lack the

necessary mathematical background to comprehend many Software Engineering techniques *
(e.g., logic, proof techniques, algebras). In addition, the majority of undergraduate stu-

dents have not had previous exposure to reading and comprehending, much less writing,

technical documents. A software engineer must be proficient in both of these areas, and

therefore, curricula must be adjusted appropriately when incorporating a Software

Engineering education.

Three solutions to the above problem were identified based on [For90]. The first is

to offer Software Engineering very early in the curriculum (at the freshman or sophomore

level). After this, students are required to utilize these principles (and get "hands-on" expe-

rience) in all courses where they are expected to develop any software system. The major

drawback of this "bottom-up" approach [For90] is that beginning computer science stu-

dents may not have the background necessary to fully grasp concepts taught in the course

(e.g., mathematical background). In addition, organizational restrictions may prevent

6

teaching such a course early in the curic!um. If this apprach is not feasible, then the

students must, at a minimum, be taught basic Software Engineering principles (without

getting into too much detail) from the ouwt; adherence to these principles should be rigidly

enforced. This approach creates a strong foundation and it provides students with the nec-

essary 'hinds-on" experience throughout their academic career. However, it is not flexi-

ble; it will be difficult for students to change into the existing compute science curriculum.

It is also risky for the school faculty, and students because it will be difficult to *bail out*

if problems are encountered (IFor90).

The second solution is to offer Software Engineering in the middle of the curricu-

lum (Le., early in the junior year) and have students utilize the principles in advanced

courses containing some form of software development (e.g., operating system, compiler

design, real-time systems, etc.). This approach, however, may encounter resource difficul-

ties; most institutions like GSW use either Pascal or C as the primary language for

advanced programming courses. Further, most students opt to use Pascal for the develop-

ment of much of their softwae. Standard Pascal prevents students from fully utilizing sev-

era key Software Engineering principles (e.g., separation of module interfaces and their

implementation, independent compilation units, generics, concurrent programming). Some

use C as the implementation language for such projects, but C does not adequately address

all these principles. Further, C programs are often not very easy to understand and mainte-

nance is often difficult. Unfortunately, Ada, which does not have such problems [Sam

86], is often not a feasible alternative because of its cost.

The final solution to this problem is to provide Software Engineering in the senior

year followed by additional course(s) in which students utilize the principles of Software

Engineering. The first course (basic Software Engineering course) should cover the prin-

ciples of Software Engineering. The course material must be complemented with a thor-

ough understanding of the problem domain for an extended software development project.

0 0 0 0 0 0 0 0 0 •

7

To be realistic, the requirements must be somewhat flexible. Subsequent course(s) will j
puimarily involve completing this project. At GSW, two follow-up courses that taught the

Ada programming language in conjunction with the basic Software Engineering principles

were developed. Students, working in groups, used Ada as the implementation language

for the project outlined and researched in the first follow-up course. This project took them

through a major portion of software lifecycle and, at the same time, helped them get first-

hand expenence in utilizing Software Engineering concepts and principles. In addition,

they were exposed to the critical aspects of working in teams and trying to deliver a "qual-

ity" product on time.

For institutions like GSW the third "top-down" approach [For90] maybe the most

feasible of the three approaches to overcome the current problem with Software

Engineering education. Students will not only learn the principles but get to use them in a

non-trivial project. Further, they will get a feel for the real world and what they can expect

in the work place when they are ready to enter the work force.

IV. CURRICULUM

This section lists the curriculum that was developed for the three-course Software

Engineering curriculum. The most important result expected was students who would be

more productive in the work place earlier than by current instruction methods. Students

would not only know the principles but would also have used them in their project(s) and

learned from their experiences. Other results expected from this project include (1) a

streamlined curriculum which may be adopted by other, similar, institutions wishing to

establish a Software Engineering track in their undergraduate programs, (2) determination

of the feasibility of such a curriculum, and (3) identification of other courses in Software

Engineering education. The feasibility of such a curriculum is discussed in section V.

Discrete Sttures and Technical Writing were the only courses identified as other

• • • •• • •

S.. .. • " • I 1 i ". ,,m i i ,i' • , - • - -

8

important courses that were feasible at GSW. This section contains the outlines de& -loped

for the three-course Software Engineering sequence.

As mention earlier, a Software Engineering course was already (Summer Quarter
4r

1991) established before the start of this project Some preliminary work with respect to

the course outlines for the follow-up courses was also done. A formal outline for the fol-

low-up courses was submitted to the College and was accepted in the Fall Quarter of 1992.

The following is a summary of the outline of the courses for the complete three-course

sequence offered at the senior level The numbers listed are actual course numbers.

Relevant books and/or articles were made available to students through the college library.

Software Engineering (CSC 430):

Objwcn . To expose students to the problems associated with developing software

system constrained by user requirements, and cost and time estimates in

a conbact. Students will learn basic principles and techniques used in

Software Engineering. The techniques will be utilized in a term project.

PrequisiWe(s): Data Structure and Algorithms (CSC 310) is required and Design of

Operating Systems (CSC 421) is desired. S
Coments: The following topics will be covered in this course: (1) introduction to

Software Engineering, (2) qualities of good software systems, (3)

Software Engineering principles, (4) software models and design tech-

,;ques, (5) specification techniques, (6) verification techniques, (7)

tools and environments, and (8) software reuse.

Textbook: [Ghe9l]

Software Engineering with Ada - I (CSC 432):

Object6 s: To teach students how to use the Ada programming language to

achieve the goals of Software Engineering. Students will be introduced

S

0 0 0 0 0 *

9

to Ada with emphasis on relating Ada constructs to Software

Engineering prmncqis The first pert of a tm project is ruired. The

project winl be done in teams whose size will depend on the enrollment.

Students enrolling in CSC 432 are expected to enmoll for CSC433.

petrefise(s): Software Engineering (CSC 430)

Content. The fowing tpics will be covered in this comsc: (1) overview of

Software Engineing, (2) introduction to Ada, (3) software architec-

ture, (4) data types in Ada, and (5) control flow and program structure.

All Ada constiructs wiHl be related to the corsponding Software 5

Engineering principles so that students reaze how the constructs help in

software development.

Texbook. [Boo87a], and [Boo87b] as reference if required. 5

Software Eneering with Ada - U (CSC 433):

Objecws. A continuation of CSC 432, this course will be devoted to reusability,

concurrent and real-time processing, and programming in the large.

Students are expected to complete the pmject started in CSC 432.

Prerequie(s): Software Engineering (CSC 430) and Software Engineering with

Ada - I (CSC 432)

Content: The following topics will be covered in this course: (1) review of

basic Ada concepts, (2) reusability and Ada generics including input-

output facilities, (3) Ada tasks, and (4) exception handling.

Tejabook: [Boo87a], and [Boo87b] as reference if required.

V. EXPERIENCES

This section prents the experiences during the development of the Software

Engineering course sequence. These are given with the intention that other institutions

• • • •• • •

10

learn from them before establishing such a curriculum. It was determined that such a

cote sequence is feasible as long as there is significant institutional support specially

from the W301n responsible for allocating the hardware and the software resources. It

would be nice to report that everything went well in this project but, unfortunately, this was

not the case;, seve,-J problems were encountered. These aem (1) small class size, (2) level

of student -'-psurdness, (3) limited computing facilities and library holdings, and (4)

problems related to the allocation of hardware and software resources. These problems are

discussed in this section.

A major problem in the pilot study was enrollment; the Computer Science depart-

ment at GSW is relatively small. This problem is inherent to small institutions and there

might be no solution to it. In the Fall Quarter of 1991 only a few students were registered

for the Software Engineering course. However, enrollment increased when this course

was offered during Winter Quarter 1993. This may be attributed to the fact that students

had to successfully complete this course to enroll in the follow-up courses (dealing with

Ada). Also, the Software Engineering course was made a required course in the Computer

Science curriculum. Whethe this is merely a one-time increase or not remains to be seen.

A problem related to the small department size was the loss of students in the elec-

tive courses. As mentioned earlier, the Software Engineering course (CSC 430) at GSW

College is a required course but the subsequent courses are electives. It was observed that

the class size for the first follow-up course, CSC 432, decreased by about 50 percent. This 5

may create problems with respect to the project; students work in group(s) on a problem to

be used in the entire course sequence. With loss of team members they have to lose some

time in joining up with other teams and getting back on track. This, however, is a valuable

experience for them in terms of the dynamic "real-life" environment. This problem was not

encountered in the current project since a new problem was selected for the elective courses

CSC 432 and CSC 433. But, another problem arose - due to personal reasons a key player

• • • •• • •

115

in the project withdrew from the class just four weeks before the end of the second course.

This hurt the project; the loss of a team member affected, to some extent, the progress of U

the project and it lowered the mioele of the team. The effect was more pronounced due to

the small class size.

It was pointed out earlier that student needed appropriate mathematics and writing

courses. A mathematics course, Discrete Strctures (CSC 235), was recently added to the

curriculum so most senior students did not have a chance to complete this course. Adding

other courses involves departments other than the Computer Science department and this

may be solved only through some administrative channels. Unless such courses get estab-

lished and stabilized, students' preparedness will be lower than expected.

Concurrent processing, an important aspect of Software Engineering (and Ada),

could not be covered to a great extent due to limited computing facilities. Real justice to the

concurrent processing in the follow-up courses could only have been done if additional

hardware support was available. Funds were not expected for developing a laboratory S *
containing equipment to assist in conurrent software development; simulating such a sys-

tem by input and output through files and standard devices was the only solution. This,

naturally, did not give students the real experience in concurrent processing.

The library holdings at a small liberal arts college like GSW are very limited in the

area of Computer Science. This restricts students from being current with the new ideas

and techniques. Although the facilities for inter-library loans are available at GSW, the

turnaround time is over a week - too long for a quarter that lasts only 10 weeks.

Institutions wishing to establish a Software Engineering track should be willing to invest in

some of the important journals in the field.

A significant problem encountered in this project was related to the allocation of

hardware and software resources (i.e., systems related). As with many institutions, 0

• • @ •• • •

12

specially small ones, facilities and finding are limited. The Computer Science department

enrollment at GSW is less than 25% of total Division emollment; this has moved the fund-

ing pririty to the other departments in the Dvision. The purchase of the SCO

OpenDesktop and Alsys Ada and tne allocation of a dedicated host for this project indicated

a possible improvement in the computing environment Unfortunately, this was not the

case and the cooperation received during this project was not as much as assured before the a

start of the project. Several problems like delayed system setup, unreliable and

"unfriendly" computing environment were encountered in the projecL A delayed system

setup did not give people involved enough time to familiarize themselves with the SCO

OpenDesktop and the Alsys Ada environment. This affected the project and often a *quick

and dirty* approach was often the only way out Also, due to the unreliable and unfriendly

environment, students were often diverted from the *real' problem and the advantages

offered by the Ada environment were shadowed by the unreliable and unfriendly comput-

ing environment. It is strongly felt that all problems related to the systems could have been

easily overcome by significantly greater support from the person responsible for allocating

hardware and software resources.

Despite the numLr of problems faced it is believed that students got a feel for the

problems they might encounter in their work place, and, mome importantly, they learned, to

some extent, to overcome these problems. Although it is difficult to judge from a one-time

experience, the feeling is that the objective of educating students in Software Engineering

was met and those who stayed through this project until its completion were better posi-

tiuted for a fruitful career in Software Engineering. It is strongly believed that this course

sequence stabilize over time with better results after a few iteratons and when the non-

inherent problems like student preparedness, computing and library resources, and spe-

cially those related to the system are resolved.

0

13

VI. SUMMARY 4
A software engineer must have at least one formal course in Software Engineermg.

Further, there should bk one or mome courses that complement this formal course. To this

effect, a streamlined sequence of courses to achieve the goals of Software Engineering was

presented in this report. This sequence is expected to produce graduates who will be more

productive software professionals. This three-course sequence was successfully estab-

lished in the 1992-1993 academic year in the Computer Science depamnent at Georgia

Southwestern College. The objective of educating students in Software Engineering was

met and those who went through this project are positioned to be better software engineers

than they would have been otherwise. Using the Software Engineering adaptation of

Bloom's taxonomy of educational objectives [Blo56] given in [For90] it is believed that

students who have been through this course sequence may have reached the "synthesis"

level (this is a subjective evaluation). Ada played an important role in reaching that level.

It remains to be seen how the objective of this tre-course sequence will be further met in

the future and whether students reach the -evaluation" level in the taxonomy of [For0].

Several problems were encountered and other institutions desiring to set up such a

curriculum have to design strategies to overcome them before any benefits can be derived. 0

Some problems like those associated with small class size are inherent to small institutions.

Other problems, like the level of student preparedness, can be overcome through some

institutional help. Equipment problems are funding based and can be overcome by aggres-

sively soliciting external funds so that proper laboratories can be set up. Fmialy, systems

related problems should not be problems at all; they should be overcome long before under-

taking a project of this natume.

REFERENCES

ACM91 Caomwing CQWcula 1991 Report of the ACM/IEEE-CS Joint Oriculwn Task
Force, IEEE Computer Society Press, 1991.

• • • •• • •

0 1

14

Blo56 Bloom, B., Taxonomy of Educational Objectives: Handbook P: Cognitiw

D an, David McKay, New York, 1956. I
Boe83 Boehm, B., "the Hardware/Software Cost Ratio: Is It a Myth?" IEEE Compauer,

vol. 16, no. 3, March 1983.

Boo87a Booch, G., Softfware Engineerng with Ada, Second Edition, The

Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1987.

Boo87b Booch, G., Software Components with Ada: Stricnures, Tools, and

Subsystems, The Benjamin/Cummings Publishing Company, Inc., Menlo Park,

CA, 1987.

CBB91 The College Blue Book Degrees Offered by College and Subject, 23rd Edition

1991.

Fai85 Fairley, R.E., Software Engineering Conceptr, McGraw Hill Book

Company, New York, NY, 1985.

For9O Ford, G., "1990 SEI Report on Undergraduate Software Engineering

Education," Technical Report, CMUISEI-90-TR-3 ESD-TR-90-204, March • 4
1990.

Ghe9l Ghezzi, C., Jazayeri, M., Mandrioli, D., Fundamentals of Software

Engineering, Prentice Hall, Inc., Englewood Cliffs, NW, 1991.

Sam86 Samment, J.E., "Why Ada is not just another Programming Language.,
Communication ofthe ACM, VoL 29, No. 8, Aug. 1986.

• • • •• • •

i ii i] i l l i • ~mafm ~ ln~l....

